Institute for Defense Analyses

Formulation of Default Correlation Values for Cost Risk Analysis

Bruce Harmon

Presented at SSCAG/SCAF/EACEWG Joint Meeting May 11-12, 2010 Berlin, Germany

Importance of Correlation in Cost/Risk Analysis

- Most program cost estimates are created by summing over multiple work breakdown structure (WBS) elements
- Statistical properties of a sum are dependent on correlations between the summed elements.
- The higher the correlations, the greater the dispersion in estimates of the sum.
- As WBS element correlations are generally positive ($\rho>0$), ignoring correlation (assuming $\rho=0$) results in an underestimate of dispersion.

What if the Analyst has no Knowledge of Correlation Values?

- Analyses by Book¹ suggest a default value of ρ =.2
- The Book heuristic is employed and cited by the space cost estimating community
- IDA used Book's analysis as a jumping-off point for formulating alternative default correlation values

¹Stephen A. Book, "Why Correlation Matters in Cost Estimating", 32nd Annual DoD Cost Analysis Symposium, Williamsburg, VA, February 1999

Theory and Assumptions

Start with formula for variance of a sum:

$$Var(C) = \sum_{i=1}^{n} Var(C_i) + 2 \sum_{i=1}^{n-1} \sum_{j=i-1}^{n} \rho_{ij} \sqrt{Var(C_i)Var(C_j)}.$$

- Make simplifying assumptions for sensitivity analyses
 - All element variances and correlations are equal and non-negative

 - If $\rho = 0$, $Var(C) = nVar(C_i) = n\sigma_i^2$ Where $\rho > 0$, $Var(C) = n\sigma_i^2 + \rho(n^2 n)\sigma_i^2$

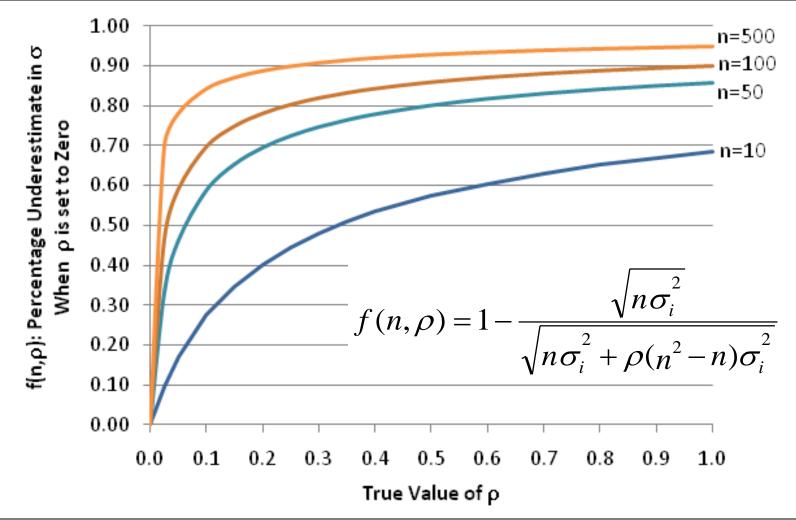
Book "Knee in the Curve" Relationship

• Equation describing inaccuracy in σ when the analyst specifies no correlation ($\rho*=0$) but the true correlation is positive ($\rho>0$)

$$f(n,\rho) = 1 - \frac{\sqrt{n\sigma_i^2}}{\sqrt{n\sigma_i^2 + \rho(n^2 - n)\sigma_i^2}}$$
 Incremental variance due to correlation

• Interpreted as percentage underestimate in σ when correlation is ignored but is positive

Knee in the Curve at $\rho=.2$



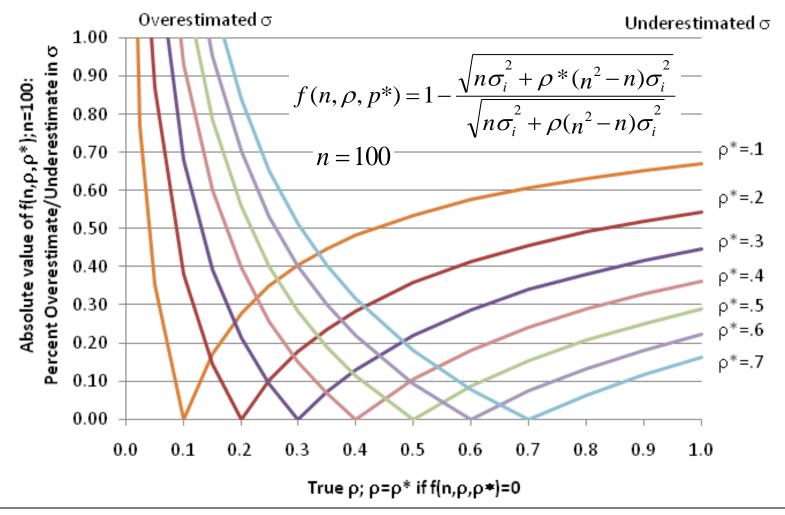
Further Analysis by Book

• Book presents a modified function where the analyst's choice of $\rho(\rho^*)$ is varied around $\rho^*=.2$

$$f(n, \rho, p^*) = 1 - \frac{\sqrt{n\sigma_i^2 + \rho^*(n^2 - n)\sigma_i^2}}{\sqrt{n\sigma_i^2 + \rho(n^2 - n)\sigma_i^2}}$$

- In this case percentage errors can be positive or negative
 - Graphical representations of $f(n, \rho, \rho^*)$ are expressed as absolute values
- Visual inspection indicates balanced over and under estimates at $\rho*=.2$

Sensitivity of Percent Error in σ When Choice of ρ^* is Varied



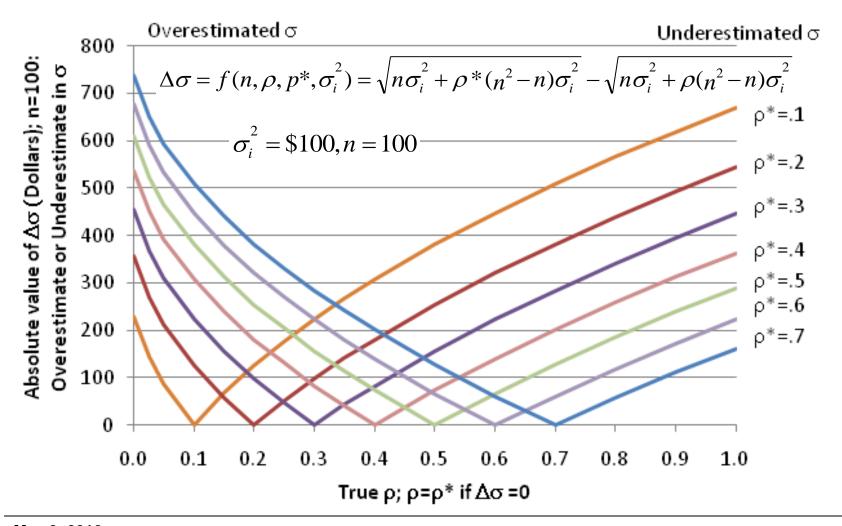
Alternative Formulation

- Book recommends $\rho*=.2$ based on perceived balance of percentage errors in σ
- As σ is in the dimension of the cost estimate, formulate function in terms of raw error

$$\Delta \sigma = f(n, \rho, p^*, \sigma_i^2) = \sqrt{n\sigma_i^2 + \rho^*(n^2 - n)\sigma_i^2} - \sqrt{n\sigma_i^2 + \rho(n^2 - n)\sigma_i^2}$$

- Find $\rho*$ where the expected value of $\Delta\sigma$ is zero: $E(\Delta\sigma)=0$
 - Explicitly balance over and underestimates

Sensitivity of $|\Delta\sigma|$ When ρ^* is Varied



Derivation of $E(\Delta \sigma)$

- Implied distribution of ρ is uniform
 - The analyst has no priors for ρ (other than non-negativity)

$$f(x) = \frac{1}{b-a}$$
, a=0, b=1.

• Given this, we can derive $E(\Delta \sigma)$:

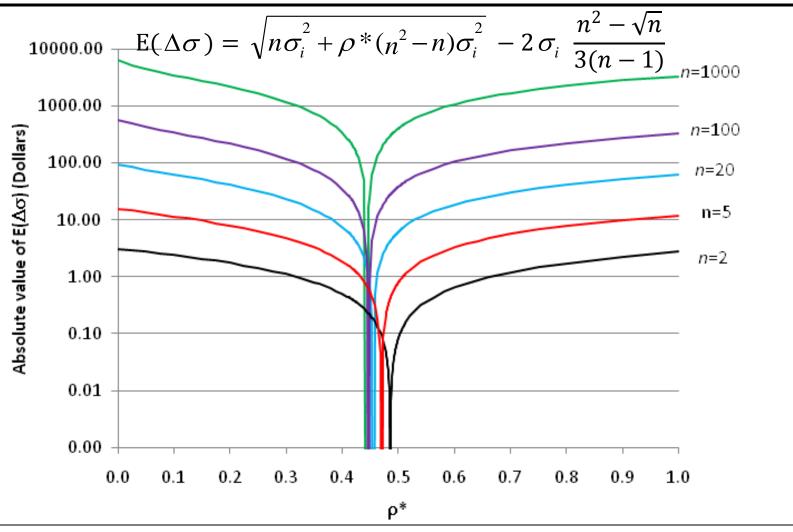
As $\sqrt{n\sigma_i^2 + \rho^*(n^2 - n)}\sigma_i^2$ is not affected by ρ , we only need

to derive the expected value of $\sqrt{n\sigma_i^2 + \rho(n^2 - n)\sigma_i^2}$

$$E(g(x)) = \int_{0}^{1} \sqrt{n\sigma_{i}^{2} + x(n^{2} - n)\sigma_{i}^{2}} dx = 2\sigma_{i} \frac{n^{2} - \sqrt{n}}{3(n - 1)};$$

$$E(\Delta\sigma) = \sqrt{n\sigma_i^2 + \rho * (n^2 - n)\sigma_i^2} - 2\sigma_i \frac{n^2 - \sqrt{n}}{3(n-1)}$$

Sensitivity of $|E(\Delta\sigma)|$ to $\rho*$



Find $E(\Delta \sigma) = 0$ for a given n

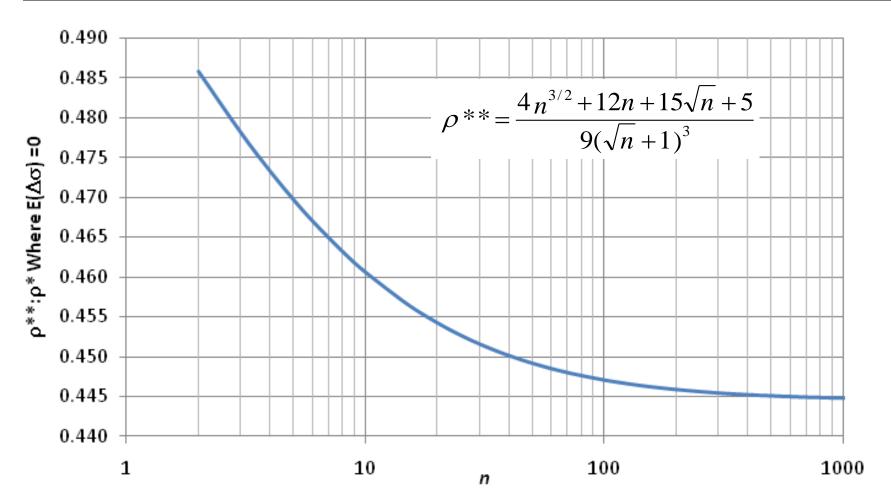
- Optimum $\rho * (\rho * *)$ is where $E(\Delta \sigma) = 0$
- Solve for p∗

$$E(\Delta\sigma) = \sqrt{n\sigma_i^2 + \rho * (n^2 - n)\sigma_i^2} - 2\sigma_i \frac{n^2 - \sqrt{n}}{3(n-1)} = 0$$

$$\rho ** = \frac{4n^{3/2} + 12n + 15\sqrt{n} + 5}{9(\sqrt{n} + 1)^3}$$

- Note that σ is not included in this expression

Sensitivity of $\rho**$ to n



Conclusions

- If the analyst has no prior knowledge of correlations (but thinks they are positive), a default value of around .45 is appropriate
- The methodology can be applied to other prior beliefs regarding correlation bounds
 - e.g the correlations fall between -.2 and 1

_

_